Regression: Probabilistic perspective Machine Learning

Hamid R Rabiee – Zahra Dehghanian Spring 2025

Curve fitting: probabilistic perspective

Describing uncertainty over value of target variable as a probability distribution

The learning diagram including noisy target

Curve fitting: probabilistic perspective (Example)

Special case:

Observed output = function + noise

$$y = f(\mathbf{x}; \mathbf{w}) + \epsilon$$
e.g., $\epsilon \sim N(0, \sigma^2)$

$$y \sim N(f(\mathbf{x}; \mathbf{w}), \sigma^2)$$

Noise: Whatever we cannot capture with our chosen family of functions

Curve fitting: probabilistic perspective (Example)

Best regression

$$\mathbb{E}[y|\mathbf{x}] = E[f(\mathbf{x}; \mathbf{w}) + \epsilon] = f(\mathbf{x}; \mathbf{w})$$
$$\epsilon \sim N(0, \sigma^2)$$

- f(x; w) is trying to capture the mean of the observations y given the input x:
- $\mathbb{E}[y|x]$: conditional expectation of y given x
 - evaluated according to the model (not according to the underlying distribution P)

Curve fitting using probabilistic estimation

- Maximum Likelihood (ML) estimation
- □ Maximum A Posteriori (MAP) estimation

Maximum likelihood estimation

- lacksquare Given observations $\mathcal{D} = \left\{ \left(oldsymbol{x}^{(i)}, y^{(i)}
 ight) \right\}_{i=1}^n$
- Find the parameters that maximize the (conditional) likelihood of the outputs:

$$L(\mathcal{D}; \boldsymbol{\theta}) = p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(y^{(i)}|\boldsymbol{x}^{(i)}, \boldsymbol{\theta})$$

$$\mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \ \mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$$

$$y = f(\mathbf{x}; \mathbf{w}) + \epsilon$$
, $\epsilon \sim N(0, \sigma^2)$

- y given x is normally distributed with mean f(x; w) and variance σ^2 :
 - we can also model the uncertainty in the predictions, not just the mean

$$p(y|\mathbf{x}, \mathbf{w}, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2} (y - f(\mathbf{x}; \mathbf{w}))^2\}$$

Example: univariate linear function

$$p(y|\mathbf{x}, \mathbf{w}, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2}(y - w_0 - w_1 x)^2\}$$

Why is this line a bad fit according to the likelihood criterion?

 $p(y|x, w, \sigma^2)$ for most of the points will be near zero (as they are far from this line)

Maximize the likelihood of the outputs (i.i.d):

$$L(\mathcal{D}; \boldsymbol{w}, \sigma^2) = \prod_{i=1}^{N} p(y^{(i)}|\boldsymbol{x}^{(i)}, \boldsymbol{w}, \sigma^2)$$

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmax}} L(\mathcal{D}; \boldsymbol{w}, \sigma^2)$$

$$= \underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{i=1}^{N} p(y^{(i)}|\boldsymbol{x}^{(i)}, \boldsymbol{w}, \sigma^2)$$

It is often easier (but equivalent) to try to maximize the <u>log-likelihood</u>:

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmax}} \ln p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \sigma^2)$$

$$\ln \prod_{i=1}^{N} p(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w}, \sigma^{2}) = \sum_{i=1}^{N} \ln \mathcal{N}(y^{(i)}|f(\mathbf{x}^{(i)}; \mathbf{w}), \sigma^{2})$$

It is often easier (but equivalent) to try to maximize the log-likelihood:

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmax}} \ln p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \sigma^2)$$

$$\ln \prod_{i=1}^{N} p(y^{(i)}|\boldsymbol{x}^{(i)}, \boldsymbol{w}, \sigma^2) = \sum_{i=1}^{N} \ln \mathcal{N}(y^{(i)}|f(\boldsymbol{x}^{(i)}; \boldsymbol{w}), \sigma^2)$$

$$= -N \ln \sigma - \frac{N}{2} \ln 2\pi - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y^{(i)} - f(\boldsymbol{x}^{(i)}; \boldsymbol{w}))^2$$
sum of squares error

- Maximizing log-likelihood (when we assume $y = f(x; w) + \epsilon$, $\epsilon \sim N(0, \sigma^2)$) is equivalent to minimizing SSE
- Let $\widehat{\boldsymbol{w}}$ be the maximum likelihood (here least squares) setting of the parameters.

- Maximizing log-likelihood (when we assume $y = f(x; w) + \epsilon$, $\epsilon \sim N(0, \sigma^2)$) is equivalent to minimizing SSE
- Let $\widehat{\boldsymbol{w}}$ be the maximum likelihood (here least squares) setting of the parameters.
- What is the maximum likelihood estimate of σ^2 ?

$$\frac{\partial \log L(\mathcal{D}; \boldsymbol{w}, \sigma^2)}{\partial \sigma^2} = 0$$

$$\Rightarrow \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - f(\boldsymbol{x}^{(i)}; \hat{\boldsymbol{w}}))^2$$

Mean squared prediction error

Generally, maximizing log-likelihood is equivalent to minimizing empirical loss when the loss is defined according to:

$$Loss\left(y^{(i)}, f(\boldsymbol{x}^{(i)}, \boldsymbol{w})\right) = -\ln p(y^{(i)}|\boldsymbol{x}^{(i)}, \boldsymbol{w}, \boldsymbol{\theta})$$

- Loss: negative log-probability
 - More general distributions for p(y|x) can be considered

Maximum A Posterior (MAP) estimation

► MAP:

- Given observations D
- Find the parameters that maximize the probabilities of the parameters after observing the data (posterior probabilities):

$$\boldsymbol{\theta}_{MAP} = \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathcal{D}))$$

Since $p(\boldsymbol{\theta}|\mathcal{D}) \propto p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

$$\boldsymbol{\theta}_{MAP} = \max_{\boldsymbol{\theta}} \ p(\boldsymbol{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

Maximum A Posterior (MAP) estimation

Given observations $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)} \right) \right\}_{i=1}^{N}$

$$\max_{\mathbf{w}} p(\mathbf{w}|\mathbf{X}, \mathbf{y}) \propto p(\mathbf{y}|\mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \alpha^2 \mathbf{I}) = \left(\frac{1}{\sqrt{2\pi}\alpha}\right)^{d+1} exp\left\{-\frac{1}{2\alpha^2}\mathbf{w}^T\mathbf{w}\right\}$$

Maximum A Posterior (MAP) estimation

Given observations $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})\}_{i=1}^{N}$

$$\max_{\boldsymbol{w}} \ln p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{w},\sigma^2) p(\boldsymbol{w})$$

$$\min_{\mathbf{w}} \frac{1}{\sigma^2} \sum_{i=1}^{N} (y^{(i)} - f(\mathbf{x}^{(i)}; \mathbf{w}))^2 + \frac{1}{\alpha^2} \mathbf{w}^T \mathbf{w}$$

• Equivalent to regularized SSE with $\lambda = \frac{\sigma^2}{\alpha^2}$

Feed back

 $\ \ \, \square \, \, \underline{https://forms.gle/vKRbyVVsWRKcZuqr8}$

Resource

- □ C. Bishop, "Pattern Recognition and Machine Learning", Chapter 3.3.
- Course CE-717, Dr. M.Soleymani

